数学笔记-同济第七版高数(上)-第一章-函数与极限-连续函数运算
一、连续函数运算-四则运算
设f(x),g(x)在x=x0处连续,则:
1、f(x)±g(x)在x=x0处连续
2、f(x)g(x)在x=x0处连续
3、若g(x)≠0,则f(x)/g(x)在x=x0处连续
证明:
因为f(x),g(x)在x=x0处连续
所以lim(x-x0)f(x)=f(x0),lim(x->x0)g(x)=g(x0)
(1)
lim(x->x0)[f(x)±g(x)]=lim(x->x0)f(x)±lim(x->x0)g(x)=f(x0)±g(x0)
所以f(x)±g(x)在x=x0处连续
(2)
lim(x->x0)[f(x)g(x)]=lim(x->x0)f(x)lim(x->x0)g(x)=f(x0)g(x0)
所以f(x)g(x)在x=x0处连续
(3)
g(x)≠0
lim(x->x0)[f(x)/g(x)]=lim(x->x0)f(x)/lim(x->x0)g(x)=f(x0)/g(x0)
所以f(x)/g(x)在x=x0处连续
二、连续函数运算-复合运算
y=f(u), u=g(x), g(x)≠a
若:lim(u->a)f(u)=A, lim(x->x0)g(x)=a, 则lim(x->x0)[f(g(x))]=A
即:lim(x->x0)[f(g(x))]=f[lim(x->x0)g(x)]=f(a)
所以求极限遇到复合函数可以将lim往子函数里面“钻”
如:lim(x->0)arctanx((1-x)/(1+x))=arctan[lim(x->0)((1-x)/(1+x))]=arctan1=π/4
三、初等函数连续性
1、基本初等函数
(1)x^a
(2)a^x, (a>0且a≠1)
(3)loga(x),(a>0且a≠1)
(4)sinx, cosx, tanx, cotx, secx, cscx
(5)arcsinx, arccosx, arctanx, arccotx
2、基本初等函数在其定义域内连续
3、初等函数(基本初等函数与常数进行四则或复合而成的函数)在其定义域内连续
例1:lim(x->2)[x^3-3x^2+4]
此函数为初等函数,在定义域内连续,由连续的性质的值极限值等于该点函数值
所以:原式=0
例2:lim(x->0)[(1+2x)/(1-x)]^(1/sin2x)
=lim(x->0)[1+3x/(1-x)]^(1/sin2x)
=lim(x->0)[1+3x/(1-x)]^[((1-x)/3x)*(3x/sin2x)*(1/1-x)]
=e^[lim(x->0)[(3x/sin2x)*(1/1-x)]]
=e^[lim(x->0)(3x/sin2x)*lim(x->0)(1/1-x)]
=e^(3/2)
本文来自言嵩投稿,不代表胡巴网立场,如若转载,请注明出处:https://www.hu85.com/276813.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 xxxxx@qq.com 举报,一经查实,本站将立刻删除。